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Abstract

Background Transcranial Pulse Stimulation (TPS) has been recently introduced as a novel ultrasound neuromodulation 
therapy with the potential to stimulate the human brain in a focal and targeted manner. Here, we present a first retrospective 
analysis of TPS as an add-on therapy for Parkinson’s disease (PD), focusing on feasibility, safety, and clinical effects. We 
also discuss the placebo response in non-invasive brain stimulation studies as an important context.
Methods This retrospective clinical data analysis included 20 PD patients who received ten sessions of TPS intervention 
focused on the individual motor network. Safety evaluations were conducted throughout the intervention period. We ana-
lyzed changes in motor symptoms before and after TPS treatment using Unified Parkinson’s Disease Rating Scale part III 
(UPDRS-III).
Results We found significant improvement in UPDRS-III scores after treatment compared to baseline (pre-TPS: 16.70 ± 8.85, 
post-TPS: 12.95 ± 8.55; p < 0.001; Cohen’s d = 1.38). Adverse events monitoring revealed no major side effects.
Conclusion These preliminary findings suggest that TPS can further improve motor symptoms in PD patients already on 
optimized standard therapy. Findings have to be evaluated in context with the current literature on placebo effects.

Keywords Ultrasound · Neuromodulation · Transcranial pulse stimulation · Parkinson’s disease · Brain stimulation · 
Placebo

Abbreviations
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MDS  Movement disorder society
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TPS  Transcranial pulse stimulation
UPDRS  Unified Parkinson’s Disease Rating Scale
VAS  Visual analogue scale

Introduction

Non-invasive brain stimulation (NIBS) holds potential for 
alleviating motor symptoms of Parkinson’s disease (PD) 
[1]. Recently, a novel NIBS-technique called Transcranial 
Pulse Stimulation (TPS) has been introduced, which uses 
ultrasound pressure pulses to modulate brain activity [2]. 
TPS bears the advantage that the small ultrasound foci are 
independent from pathological conductivity changes and 
specific brain areas can therefore be precisely targeted, even 
in the depth of the brain [3, 4]. Although the field is still 
young, navigated ultrasound stimulation has shown promise 
in other neurological conditions [5], such as Alzheimer’s 
disease (AD) [5, 6], disorders of consciousness [7, 8], and 
depression [6, 9], and might be a valuable adjunct treatment 
for Parkinson’s disease.

The underlying mechanisms of ultrasound neuromodula-
tion are not yet fully elucidated. According to previously 
published investigations, ultrasound pulses impact mechano-
sensitive ion channels. Thereby, the mechanical stimuli are 
transduced into biochemical signals, subsequently triggering 

 * Roland Beisteiner 
 roland.beisteiner@meduniwien.ac.at

1 Department of Neurology, Medical University of Vienna, 
Spitalgasse 23, 1090 Vienna, Austria

2 Department of Pediatrics and Adolescent Medicine, Medical 
University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, 
Austria

http://orcid.org/0009-0009-4344-3972
http://crossmark.crossref.org/dialog/?doi=10.1007/s00415-023-12114-1&domain=pdf


 Journal of Neurology

1 3

downstream signal responses, and resulting in protein-level 
changes. [10, 11]. Recently, the mechanosensitive ion chan-
nel Piezo1 was identified as a significant mediator of the 
neuromodulatory impact of ultrasound in vivo [12]. Addi-
tionally, recent data indicate that single ultrasound pulses 
generate supra-threshold neuronal excitation [13]. However, 
further research is needed to understand how these biologi-
cal effects translate into clinical outcomes and to determine 
the therapeutic effects of TPS.

In this paper, we present the first major retrospective 
clinical data analysis on ultrasound neuromodulation as an 
add-on therapy in patients with PD. The purpose of the study 
was to investigate the feasibility, safety, and clinical effects 
of TPS on motor symptoms. Considering that placebo effects 
have been shown to be particularly important in PD [14, 15], 
the results will be discussed in context of a comprehensive 
literature analysis on possible NIBS sham effects.

Methods

Study design

This was an open-label, uncontrolled, retrospective study 
to investigate the following questions: (i) is TPS safe and 
feasible in a broad uncontrolled spectrum of PD patients as 
typically seen in clinical practice, and (ii) are there indica-
tions for clinical effects as examined by clinical scores? The 
primary outcome measure was the change in the Unified 
Parkinson’s Disease Rating Scale part III (UPDRS-III) after 
completion of TPS treatment compared with pre-treatment 
scores.

Patient sample

20 consecutive patients with a primary diagnosis of PD 
(various subtypes and co-morbidities) diagnosed by external 
specialists in neurology were included (15 men, 5 women; 
mean age 67.6 ± 7.5 years; age range 48–84 years; mean 
disease duration 53.5 ± 28.0 months; disease duration range 
3–148 months). All patients had requested TPS treatment as 
add-on therapy (therapeutic attempt) and received ten ses-
sions of TPS intervention within 2 weeks at the TPS Therapy 
and Development Center in Vienna (Austria). All patients 
were on state-of-the-art treatments optimized for the individ-
ual case by the treating neurologists. Patients were instructed 
not to change their optimized treatments during TPS therapy. 
Common inclusion criteria were written treatment request, 
clinical stability, the completion of the UPDRS assessment 
before and after therapy by external neurologists, and written 
informed consent. As required by practical clinical therapy, 
co-morbidities outside TPS contraindications were allowed. 
A detailed list of co-morbidities can be found in Table S2 

in the Supplementary Information (SI). Common exclusion 
criteria were TPS contraindications (i.e., thrombosis, preg-
nancy, epiphyseal plates in children, tumor in the treatment 
area, cortisone treatments within 6 weeks before the first 
application, metal objects in the head, and pacemakers not 
approved for  TPS® therapy) as specified in the documenta-
tions of the NEUROLITH TPS system (Storz Medical AG, 
Tägerwilen, Switzerland).

TPS parameters

Brain stimulation was performed using the NEUROLITH 
TPS system (Storz Medical AG, Tägerwilen, Switzerland) 
and the methodology developed by our research group over 
the past decade [2, 5]. The treatment protocol for PD encom-
passed ten TPS sessions conducted daily over a 2-week 
period, from Monday to Friday. In case of holidays occur-
ring during the treatment weeks, two sessions were admin-
istered in a single day, each with reduced energy settings. 
Further details regarding the energy settings adjustments 
and impacted patients can be accessed in Table S1 in the 
SI. Each treatment session lasted approximately 30–45 min. 
All enrolled patients completed all ten treatment sessions. 
Immediately before treatment start, high-resolution magnetic 
resonance imaging (MRI) scans for exclusion of contrain-
dications, judgement of brain morphology/brain pathology, 
and TPS navigation were recorded. In addition, each patient 
had a specific functional neurological investigation to evalu-
ate the individual clinical state. A neurologist and clinical 
neuroscientist (R.B.) defined the individual target areas for 
TPS stimulation on these MR images. Motor network stimu-
lation was focused on the primary sensorimotor area, sup-
plementary motor area, and cingulate motor area. Depending 
on symptomatology (including cognitive deficits), additional 
target areas were included according to current state of the 
clinical neuroscientific literature (e.g., left dorsolateral pre-
frontal cortex for depression). By default, 4000 ultrashort 
(about 3 μs) ultrasound pressure pulses (energy flux den-
sity = 0.25 mJ/mm2 and pulse repetition rate = 4 Hz) were 
applied in each TPS session. Real-time tracking allowed 
for precise targeting and even distribution of pulses within 
the individualized target areas. In the context of clinical 
therapy, individualized treatment settings and parameter 
adjustments are essential. In the present study, one patient 
received a reduced energy level for subjective comfort, and 
nine patients received a 50% reduction in dose for the initial 
TPS session to allow for treatment adaptation. The individ-
ual treatment parameters are detailed in Table S1 in the SI.

Patient safety evaluations

Adverse events (AE) were monitored during the 2 weeks of 
TPS therapy. At each visit, patients were asked to describe 
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AE that occurred after the previous treatment session. Addi-
tionally, at the end of each TPS session, patients evaluated 
their pressure and pain experience during the treatment 
using visual analogue scales (VAS; 0 = none and 10 = very 
strong pressure/pain).

Clinical evaluation and statistics

Patients underwent clinical evaluation within a 4-week win-
dow before and after the ten sessions of TPS intervention. 
On average, these clinical assessments occurred 14 and 
13 days before the first and after the last TPS session, respec-
tively. A detailed presentation of the individual time inter-
vals between TPS therapy and clinical testing can be found 
in Table S1 in the SI. All clinical scores were assessed dur-
ing the patients’ “ON” state by independent external neurol-
ogists. UPDRS-III was used to assess a change in the motor 
status, as the primary outcome measure. Importantly, two 
different versions of the UPDRS were used by independent 
neurologists, namely UPDRS and the revised MDS-UPDRS 
(revision of the UPDRS by the Movement Disorder Soci-
ety) [16]. To enable a consistent analysis of UPDRS-III, the 
points of the supplementary items of the MDS-UPDRS-part 
III were removed. All statistical analyses were performed 
using IBM SPSS Statistics (version 28). Primary outcome 
scores were checked for normality and subsequently a two-
sided, paired t test was performed. Effects were considered 
statistically significant if a p value < 0.05 was found.

Results

Patient safety evaluation and adverse events

Patient evaluations during the period of TPS intervention 
did not show any serious side effects. In total, 13 patients 
(65%) reported at least one mild AE during the 10 days of 
TPS treatment. Fatigue, headache, and dizziness were the 
most common AE and reported by 10 (50%), 6 (30%), and 
6 (30%) patients, respectively. All events resolved within 
a day. VAS evaluation (0–10) of within-treatment pressure 
experience resulted in 91.5% VAS 0, 3.5% 1–3, 4% 4–6, 
and 1% 7–8 (percentages calculated over all TPS sessions).

Motor scores: UPDRS‑III

Patient details are summarized in Table  1. UPDRS-III 
scores (representing the main parameter for patients’ motor 
symptoms) improved significantly after treatment (pre-TPS: 
16.70 ± 8.85, post-TPS: 12.95 ± 8.55; p < 0.001; Cohen’s 
d = 1.38; Fig. 1). Seven patients exhibited an UPDRS-III 
improvement of at least five points. None of the patients 
experienced worsening.

Discussion

We present a first retrospective investigation of ultrasound 
neuromodulation as add-on therapy in PD patients on opti-
mized state-of-the-art treatment. It is important to note 
that the patients represent a heterogeneous consecutive 
out-patient sample as typical for real-life clinical practice 
and required for judgement of practical benefits. We find 
a clear pattern of motor improvement after ten sessions of 
TPS treatment and lack of clinically relevant side effects, 
indicating that TPS may be a valuable add-on treatment for 
motor symptoms in PD. Within the clinical field, a five-point 
UPDRS change from baseline is considered as the minimal 
change that represents a clinically meaningful improvement 
[17]. In our analysis, seven patients were able to achieve or 
exceed this cut-off score. However, it is important to note 
that the presented results are not controlled by a sham group. 
The observed therapeutic success may include placebo 
effects as previously described in clinical NIBS literature 
[18–22].

There is evidence that placebo treatment triggers dopa-
mine release in the dorsal striatum, which correlates with 
placebo-induced improvements in PD symptoms [14, 23]. 
The anticipation of symptom improvement in response to 
placebo administration has also been linked to dopamine 
release in the ventral striatum and activation of the reward 

Table 1  Demographic and clinical characteristics of patients

Pt.no Disease duration 
(months)

UPDRS-III

Pre Post

P01 107 11 4

P02 52 38 33

P03 41 20 20

P04 17 9 6

P05 82 15 14

P06 34 36 30

P07 9 12 10

P08 47 11 8

P09 9 6 5

P10 120 11 4

P11 70 14 9

P12 36 17 8

P13 30 8 6

P14 45 23 14

P15 70 18 13

P16 45 13 10

P17 48 12 10

P18 148 31 29

P19 57 20 18

P20 3 9 8

Mean ± SD 53.5 ± 36.8 16.70 ± 8.85 12.95 ± 8.55
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circuitry [15, 23, 24]. A landmark meta-analysis of placebo 
groups in 11 randomized clinical trials in PD [25] revealed 
a placebo effect of up to 55% with highest placebo response 
rates in surgical studies involving patients with motor fluc-
tuations. With deep-brain stimulation (DBS), placebo effects 
reached 39% of active DBS [26].

For more details, we conducted a PubMed search for pla-
cebo-controlled NIBS-studies with at least ten PD patients 
receiving active stimulation. Out of the 16 studies analyzed 
and covering 445 patients [27–42], 12 found significant 
improvements in motor symptoms after NIBS intervention 
[27–38], whereas 4 did not [39–42]. Surprisingly, only 1 
study described significant sham effects [35]. This might 
be due to publication bias or methodological issues [e.g., 
problems with authentic sham-stimulation (for review, see 
Braga et al. 2021 [43])] and requires further investigation.

In our study, a certain amount of placebo effect 
seems likely due to the following reasons: First, placebo 
responses in non-pharmacological interventions tend to be 
greater compared to pharmacological studies [44]. Second, 
placebo responses increase with treatment intensity and 
duration [45]. Our patients received intensive care over 
a 2-week period. Third, the likelihood of receiving real 
treatment versus placebo influences the odds of placebo 
responses [46]. Fourth, requesting TPS treatment indicates 

a high expectation level [47]. However, the clear pattern 
and frequency of motor improvements (19/20 patients 
improved) render exclusive placebo effects unlikely. 
From previous TPS investigations which included sham 
controls and independent neurophysiological data (EEG 
and fMRI), there is clear evidence for TPS modulation of 
somatosensory evoked potentials, long-term neuroplastic 
changes, and long-term improvement of cognitive func-
tions in AD and depression [2, 6, 9, 48]. These findings, 
together with other clinical data [5], highlight the potential 
of ultrasound to develop towards a novel add-on neuro-
modulation therapy.

This is the first demonstration of ameliorating motor 
symptoms in PD patients using ultrasound stimulation. 
However, there are limitations to be considered. This was 
a retrospective analysis of real patient data, and there was 
no sham control included, and thus, results need to be 
interpreted with care. Furthermore, the small sample size 
limits any premature conclusions on the generalizability of 
the findings. Another crucial consideration in this context 
is the substantial variability in the efficacy of NIBS dem-
onstrated across clinical PD trials [49]. The considerable 
heterogeneity of protocols and study populations within 
the PD-NIBS domain poses a challenge in interpreting the 
results comprehensively.

Fig. 1  Comparison of Unified Parkinson’s Disease Rating Scale part 
III (UPDRS-III) total scores pre- and post-transcranial pulse stimu-
lation (TPS). A Motor symptoms improved significantly after TPS 
(p < .001; paired t test, two sided). Boxplots represent the medians, 
and the 25th and 75th percentiles, whereas error marks demonstrate 

the minimum and maximum values. B Individual change of UPDRS-
III total score after transcranial pulse stimulation (TPS). Each patient 
is indicated by a different color; the mean value is marked as dashed 
line. The UPDRS-III total score decreased in 19 out auf 20 patients 
after TPS
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Conclusion

TPS is a promising novel brain stimulation technique. The 
presented results support and extend the understanding of 
the safety and efficacy profile of TPS in the treatment of 
neurodegenerative diseases. Prospective sham-controlled 
studies with larger sample size are needed to further expand 
the knowledge on this approach, including long-term effects. 
However, the findings of this retrospective analysis represent 
a strong argument to further investigate the value of TPS as 
a novel add-on therapy for PD.
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