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Background: Traditional treatment alone might not effectively control the severity

of attention deficit hyperactivity disorder (ADHD) symptoms. Transcranial pulse

stimulation (TPS) is a non-invasive brain stimulation (NIBS) technology used on

older adults with mild neurocognitive disorders and adults with major depressive

disorder. However, there has been no study conducted on young adolescents with

ADHD. This will be the first nationwide study evaluating the efficacy and safety of

TPS in the treatment of ADHD among young adolescents in Hong Kong.

Methods: This study proposes a double-blinded, randomized, sham-controlled

trial including TPS as an intervention group and a sham TPS group. Both groups

will be measured at baseline (T1), immediately after the intervention (T2), and at

the 1-month (T3) and 3-month follow-ups (T4).

Recruitment: A total of 30 subjects aged between 12 and 17 years, diagnosed

with attention deficit hyperactivity disorder (ADHD), will be recruited in this study.

All subjects will be computer randomized into either the intervention group or the

sham TPS group on a 1:1 ratio.

Intervention: All subjects in each group will have to undertake functional MRI

(fMRI) before and after six 30-min TPS sessions, which will be completed in 2

weeks’ time.

Outcomes: Baseline measurements and post-TPS evaluation of the ADHD

symptoms and executive functions will also be conducted on all participants.

The 1- and 3-month follow-up periods will be used to assess the long-term

sustainability of the TPS intervention. For statistical analysis, ANOVA with repeated
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measures will be used to analyze data. Missing data were managed by multiple

imputations. The level of significance will be set to p < 0.05.

Significance of the study: Results emerging from this study will generate new

knowledge to ascertain whether TPS can be used as a top-on treatment for ADHD.

Clinical trial registration: clinicaltrails.gov, identifier: NCT05422274.
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Introduction

Local epidemiological data suggest that attention deficit

hyperactivity disorder (AD/HD) affects ∼6% of children, with a

male preponderance of around 2 boys to 1 girl being affected

(1). The prevalence in adults is around 2.5% (2). Clinical

features of ADHD are characterized by persistent symptoms

of inattention and/or hyperactivity/impulsivity (3) that emerge

in childhood (4). These symptoms may persist into adulthood,

leading to poor life outcomes, and affecting employment and

interpersonal relationships (5). ADHD may affect all aspects

of an individual’s life and has a negative detrimental impact

on family members (6). The neurobiological mechanism of

ADHD may be attributed to the dopaminergic imbalance in

the forebrain and basal ganglia. The prefrontal cortex, anterior

cingulate, insula, amygdala, and cerebellum are also linked to

ADHD pathophysiology (7). Typical ADHD treatments include

pharmacotherapy, stimulant medications (e.g., methylphenidate;

amphetamine), and non-stimulant medications (e.g., atomoxetine)

(8) targeting dopaminergic and noradrenergic systems in the

frontal cortex and dopaminergic system in the basal ganglia. These

medications are effective and safe for the majority of patients;

however, 20% of patients do not tolerate these medications or fail to

respond (9). Although these medications can significantly improve

ADHD symptoms and life outcomes, long-term medication

compliance is necessary to sustain the treatment efficacy (10). Drug

dosages also need to be individually monitored tominimize adverse

effects while maintaining efficacy (8). Whether the long-term risk

of taking medications outweighs the benefits in patients with

ADHD remains debatable. Although mindfulness-based cognitive

therapy (MBCT) has recently been demonstrated as an effective

psychosocial intervention (11), the long-term sustainability of the

benefits of these psychosocial interventions on ADHD is yet to be

confirmed. Pharmacotherapy is not considered as a monotherapy

for more than 50% of adult ADHD, (12, 13) and a combination

of cognitive behavioral therapy (CBT) and medication produces

broader improvements in executive functions in ADHD than

CBT alone.

Neuromodulation and non-invasive
brain stimulation (NIBS)

Attempts to design interventions that could directly modulate

brain function have received increasing interest with the advent

of technology capable of delivering highly focal and tailored

modulation of special brain circuit. Non-invasive brain stimulation

(NIBS), such as repeated transcranial magnetic stimulation

(rTMS) and transcranial direct current stimulation (tDCS), is

widely applied to re-balance neural activity at the circuitry level

to normalize functions and behavior. Nowadays, these NIBS

techniques are being used diagnostically and therapeutically in

different types of neurodegenerative diseases (e.g., Alzheimer’s

disease and Parkinson’s disease) (14), pediatric epilepsy (15),

neuropsychiatric disorders (e.g., ADHD, major depressive disorder,

and substance use disorder) (16), and neurodevelopmental

disorders (e.g., autism) (17). A recent systematic review (18) of

neurotherapeutics on ADHD presented meta-analytic evidence

that EEG-neurofeedback showed small/medium effects compared

to non-active controls in randomized controlled trials. Trials

evaluating rTMS or tDCS, however, have yielded more mixed

outcomes. Nevertheless, rTMS showed inconsistent findings on

improving cognition or symptoms in ADHD, while tDCS studies

that targeted the dorsolateral prefrontal cortex (DLPFC) showed

small effects on cognitive improvements in ADHD. The key

findings targeted on specific age groups (e.g., children, adolescents,

and adults) of people with ADHD are summarized below (Table 1).

In summary, with the exception of trigeminal nerve stimulation

(TNS), which has proven a safe and effective intervention for

ADHD, other NIBS studies such as EEG-neurofeedback and

rTMS/tDCS across different age groups have yielded inconsistent

results in ADHD. Almost all NIBS studies primarily focused on

left/right/bilateral DLPFC in ADHD. Stimulation targeting the

right inferior frontal cortex (rIFC) was shown to be ineffective

(26). Since ADHD is increasingly prevalent in Hong Kong, and

thus, there is a pressing need to evaluate the efficacy of the

latest NIBS technology (such as transcranial pulse stimulation,

TPS), not only would such research generate new neuroscientific

evidence but would also ascertain whether TPS may be an

effective adjunct treatment in ADHD to reduce disease burden

and psychiatric morbidity [e.g., mood disorders/anxiety disorders

(27), eating disorders, and substance-related disorders (28)] in

Hong Kong.

Mechanisms of TPS

Transcranial pulse stimulation uses repetitive single ultrashort

pulses in the ultrasound frequency range to stimulate the

brain. With a neuro-navigation device, TPS can target the
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TABLE 1 Findings of non-invasive brain stimulation (NIBS) studies on ADHD.

References N Age Design Intervention Treatment
region

Results

Allenby et al. (4) 37 18–65 Double-blind,

sham-controlled

randomized

controlled trials

(RCT)

3 tDCS sessions Left DLPFC tDCS improved impulsivity

symptoms

Cao et al. (19) 64 6–13

3-armed RCT

rTMS (n= 20);

ATX (n= 19);

rTMS+ ATX (n=

21)

∗ATX

= Atomoxetine

6-week rTMS Right DLPFC rTMS+ ATX group improved

significantly in inattention and

hyperactivity/impulsiveness at

post-treatment (p < 0.05). All

groups showed improvements in

clinical/cognitive measures.

McGough et al. (20) 62 8–12 Double-blind,

sham-controlled

RCT

4 weeks trigeminal

nerve Stimulation

(TNS)

Right frontal lobe

and frontal midline

Significant reduction of ADHD-RS

score (p= 0.005) and CGI score on

active TNS group (p= 0.003)

compared to sham TNS group

Soff et al. (21) 15 12–16 Double-blind RCT 5 tDCS Left DLPFC Significant reduction of

hyperactivity and inattention (P <

0.05) but no effect on impulsivity

Paz et al. (22) 22 12–16 Single-blind RCT 20 rTMS Bilateral DLPFC No effect on clinical/cognitive

outcomes (p > 0.05)

Westwood et al. (23) 50 10–18 Double-blind,

sham-controlled

RCT

15 tDCS rIFC No significant improvement in

core ADHD symptoms (p > 0.05)

Leffa et al. (24) 64 18–60 Double-blind,

parallel,

sham-controlled

RCT

20 tDCs Anodal-right and

cathodal-left

prefrontal

Mean inattention score was 18.88

(SD 5.79) in the active tDCS group

compared with 23.63 (SD 3.97) in

the sham tDCS. Significant

treatment by time intervention

evaluated by

clinician-administered version of

the adult ADHD self-report scale

(β interaction:−3.18, P < 0.001).

Cosmo et al. (25) 60 18–65 Double-blind,

sham-controlled

RCT

1 tDCS session Left DLPFC No significant differences in

ADHD symptoms between the

tDCS and sham group

human brain in a highly focal and precise manner (29). TPS

differs from tDCS and rTMS, as these use direct or induced

electric current. Using electric currents to stimulate the brain

may be limited by the problem of conductivity (30) and

failure to reach deep brain regions (31). TPS, however, uses

low-intensity focused ultrasound which provides good spatial

precision and resolution to non-invasively modulate subcortical

areas, despite the problem of skull attenuation (32, 33). By

using lower ultrasound frequencies, TPS can stimulate deep

cerebral regions, reaching as far as 8 cm into the brain.

In other words, TPS can improve skull penetration in the

human brain and improve treatment outcomes (29). The

biological mechanism of TPS is mechanotransduction. TPS can

stimulate vascular growth factors (VEGF) (34, 35) and brain-

derived neurotrophic factor (BDNF) (36), improve cerebral blood

flow, and promote angiogenesis and nerve regeneration. The

ultrashort ultrasound pulse can enhance cell proliferation and

differentiation in cultured neural stem cells, and this TPS may

play an important role in the repair of brain function in CNS

diseases (37).

Existing research on transcranial pulse
stimulation

Ultrasound for the brain is a revolutionary therapeutic

treatment approach in patients with neuropsychiatric symptoms

(38). Since TPS is a relatively new NIBS technology, only two

studies have so far been conducted on the disease population.

The first study comprised of 35 Austrian older adults with

Alzheimer’s disease (AD) who were treated with global brain

stimulation in three TPS sessions per week (6,000 pulses each)

for 2–4 weeks, with results showing significant improvement in

the Consortium to Establish a Registry for Alzheimer’s Disease

(CERAD) score immediately after intervention and at 1 and 3

months after the intervention. Results from fMRI also showed

significantly increased connectivity within the memory network

(29). Participants’ depressive symptoms were also significantly

improved, as measured by the Geriatric Depression Scale (GDS) (p

= 0.005) and the Beck Depression Inventory (BDI) (p < 0.0001)

at 1 and 3 months post-stimulation follow-ups compared with the

baseline scores (29). The second TPS study was executed by the
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principal investigator (PI) (Dr. Teris Cheung) of this proposed

study. The study evaluated TPS in people with major depressive

disorder (MDD) in an open-label pilot randomized controlled trial

(RCT) using waitlist controls (WC). A total of 30 subjects (18–

51 years) were administered six TPS sessions over 2 weeks (total

TPS pulse: 1,800–2,400, 2.5–3.0Hz). Results showed significant

improvement in the depression severity in the verum TPS group

compared to WC (p = 0.02), and the effect size was very large

(Cohen’s d = −0.9) (39). However, both Beisteiner et al. (29)

and Cheung et al.’s (39) studies were uncontrolled studies or

open-label RCTs without a sham control group. Placebo effects

have to be considered when interpreting results. Since then, there

has been no further attempt to use TPS on neurodevelopmental

disorders in children or young adolescents in Hong Kong and

nationwide. The impetus of our proposed research is to fill

this research gap, which could be critical for the management

of ADHD.

Treatment region

In this trial, we will target the left dorsal lateral prefrontal cortex

(DLPFC). The selected brain region is based on previous tDCS

research that left and right DLPFCs (40) are primarily the brain

treatment regions for ADHD and that stimulation of left DLPFC,

specifically, can effectively improve inattention and hyperactivity

(4, 21).

Objectives

The aim of this study is (1) to evaluate the efficacy and

safety of TPS on young adolescents (12–17 years) with ADHD

in Hong Kong; (2) to examine the association between TPS and

ADHD core symptom severity, executive function, inattention,

hyperactivity, impulsivity, and oppositional defiance; and (3) to

examine the brain functional connectivity changes immediately

after the 2-week TPS treatment via neuroimaging.

Hypotheses

Primary hypothesis

Participants in the verum TPS group will have a 30% reduction

in the Swanson, Nolan, and Pelham Rating Scale (SNAP IV score)

(i.e., attention deficit, hyperactivity impulse, and oppositional

defiance) after 2 weeks of TPS treatment compared with the sham

TPS group and be maintained at the 1- and 3-month follow-ups.

Secondary hypotheses

1. Participants in the verum TPS group or the sham TPS group

will have <5% somatic discomfort during the 2-week TPS

intervention on young adolescents with ADHD.

2. Participants in the verum TPS group will have a 30%

improvement in ADHD symptoms and behavior compared

with the sham TPS group after 2 weeks of TPS treatment and

be maintained at the 1- and 3-month follow-ups.

3. Participants in the verum TPS group will have a 30%

improvement in executive function after 2 weeks of TPS

treatment compared with the sham TPS group and be

maintained at the 1- and 3-month follow-ups.

4. Participants in the verum TPS group will have a 30%

improvement in both attention deficit and reduction in

hyperactivity and impulsivity after 2 weeks of TPS treatment

compared with the sham TPS group, and be maintained at the

1- and 3-month follow-ups.

5. Participants in the verum TPS group will have more brain

connectivity changes after 2 weeks of TPS compared with

the sham TPS group and be maintained at the 1- and 3-

month follow-ups.

Trial design

This proposed study is a two-armed, randomized, double-blind,

sham-controlled trial evaluating the efficacy and safety of a 2-

week TPS treatment on young adolescents with ADHD. The trial

design complies with the Consolidated Standards of Reporting

Trials (CONSORT) statement (41). Participants will be randomly

allocated into the verum TPS group or sham TPS group. All the

participants’ parents will be informed about the randomization

procedures and that they have a 50% chance of receiving the verum

TPS or the sham TPS. This study will be conducted in accordance

with the Declaration of Helsinki (42). Both groups will be measured

at baseline (T1), immediately after the 2-week intervention (T2),

and at 1- and 3-month follow-ups (T3) (43) (Figure 1).

Methods

Subjects

Participants will be recruited via a mass email invitation

attached with a QR code poster that will be delivered via members

of the Hong Kong Association for ADHD, CUHK, and HKU. A QR

code flier will also be flagged up in communal areas on campus. The

recruitment period will span 2 months. All participants will require

parental written consent for TPS treatment and neuroimaging.

Both participants and their parents will be informed that this study

involves random allocation into either a sham or treatment group,

and the possible side effects of TPS will be clearly stated in the

information sheet.

Inclusion criteria

The inclusion criteria are as follows: (1) those who have a

confirmed diagnosis of ADHD according to the 5th edition of the

Diagnostic and Statistical Manual of Mental Disorders (DSM-5)

of the American Psychiatric Association; (2) those with Chinese

ethnicity, aged 12–17 years, with no co-morbidity of other mental

disorders (e.g., intellectual disability disorders) or organic brain

diseases that affect cognitive functions; (3) those who have no
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FIGURE 1

Flow diagram for subjects’ enrollment, randomization, allocation, and follow-up.

severe systemic diseases including heart, liver, lung, and kidney

diseases; (4) those who have an IQ of >80 by Stanford–Binet

Intelligence Scale, 5th Edition (SB-5); and (5) those who have

written consent from parents.

Exclusion criteria

The exclusion criteria are as follows: (1) SNAP IV score <1;

(2) those who had not taken ADHD medication in the previous

2–4 weeks; (3) those who had been treated with TMS/rTMS/tDCS

or electroconvulsive therapy in the previous 12 months; (4) those

who had taken monoamine oxidase inhibitors in the previous

14 days; (5) those who have a history of epilepsy, brain trauma,

brain surgery/brain tumor, brain aneurysm, or other concomitant

unstable major medical conditions like hemophilia or other blood

clotting disorders or thrombosis; (6) those who have significant

communicative impairments; (7) those who have metal implants

in the brain treatment region or artificial cardiac pacemaker in situ;

(8) those who had had corticosteroid treatment within the previous

6 weeks before the first TPS treatment; and (9) those who have a

history of micro-cavernomas.

Sample size

To the best of our knowledge, there is no interventional study

evaluating the efficacy of TPS on ADHD. Based on our previous
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open-label pilot RCT (39) evaluating TPS in adults with major

depressive disorder that showed a large effect size (d = 0.91),

we hypothesize a large effect of TPS in this study. We used

G∗power version 3.1.9.4 to calculate the target sample size. With

a statistical power of 95% and a statistical significance level of 0.05

to detect a medium between-groups effect size (d) of 0.91 with four

measurement time points, each group will require 15 subjects. A

total sample of 30 is required in this trial. The attrition rate in our

pilot MDD trial was 0%. We expect that the attrition rate in this

ADHD trial would be <5%. Subjects dropping out of the 2-week

intervention period will be replaced by another enrolled subject in

this pilot study.

Screening and self-administered
questionnaire

Participants’ parents will complete a QR code online

application form soliciting sociodemographic information

[age, gender, educational background, monthly family household

income, living circumstances, school year, participant’s psychiatric

history, and duration of ADHD diagnosis (in years/months)],

age of diagnosis, duration of taking prescribed medications (in

years/months), current drugs and dosages, and family history of

psychiatric disorder.

Eligible subjects will then fill in the screening tool (The

Swanson, Nolan, and Pelham Rating Scale (SNAP IV), and those

with a SNAP IV mean score of >2 will be recruited. Subjects’

medical history, treatment regime, and developmental history will

be obtained by direct inquiry with subjects’ parents either by Zoom

interview or Facetime before neuroimaging and TPS treatment.

Both participants and parents will be interviewed by the PI and the

research personnel. Parents need to hold a valid medical certificate

of his/her child’s ADHD diagnosis and a prescribed formulation

sheet during the online interview. Any parent who fails to show

this proof will not be invited to participate in the trial.

Randomization, allocation, and masking

All consenting participants will be listed in alphabetical order

according to their surnames, and each participant will be assigned

a unique identifier. An independent statistician (Dr. Li Man

Ho) will use a computer-generated list of random numbers

(www.random.org) to ensure the concealment of randomization.

Randomization will be conducted by an independent statistician

off-site using a stochastic minimization program to balance the

gender, age, and SNAP-IV scores of the participants. Block

randomization with blocks of 10 (total: 3 blocks) will be

used to allocate treatment groups. Participants from each block

will be randomly assigned to the verum TPS groups or the

sham TPS groups on a 1:1 ratio. To avoid information flow,

participants/parents and research associates will be blinded to the

group allocation to minimize potential contamination of the effects

of TPS or subject bias. The interventionist will not be involved

in data collection or pre- and post-TPS measurements. Outcome

FIGURE 2

Transcranial pulse stimulation (TPS) system.
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FIGURE 3

Transcranial pulse stimulation (TPS) (STORZ MEDICAL)

post-intervention images.

measurements will be conducted by a research associate who is not

involved in the group allocation. Participants and their parents will

be asked to guess the grouping (verum TPS vs. sham TPS) in the

last TPS session to determine the probability of guessing the group

allocation correctly in the subject blinding (44).

Interventions

TPS intervention will be performed at the Integrative Health

Clinic, at the Hong Kong Polytechnic University. A licensed

mental health practitioner (PI: Dr. Teris Cheung) will deliver

the intervention.

TPS procedures

The TPS system consists of a mobile single transducer

and an infrared camera system for MR-based neuro-navigation

(NEUROLITH, Storz Medical AG, Tägerwilen, Switzerland). TPS

generates single ultrashort (3 µs) ultrasound pulses with typical

energy levels of 0.2–0.25 mJ/mm2 and pulse frequencies of 4–

5Hz (pulses per second). During the TPS session, participants

will be sitting in a comfortable electronic chair in the treatment

venue. Participants will wear a BodyTrack system consisting of a

3D camera, tracking glasses with markers, and a TPS handpiece

with markers (Figure 2). This BodyTrack system ensures that the

participant’s head matches with his/her fMRI T1 images previously

taken in UBSN so that each TPS pulse applied can be visualized

and documented in real-time. Real-time tracking of the handpiece

position enables automatic visualization of the treated brain region.

The energy applied will be highlighted in green (Figure 3). The

interventionist will use the variable stand-offs at the handpiece

for depth regulation and manual movement of the handpiece over

the skull with real-time visualization of participants’ fMRI brain

FIGURE 4

Transcranial pulse stimulation system and TPS treatment venue in

IHC/PolyU.

images. The whole treatment session will be recorded for post-

hoc evaluation of the individual intracerebral pulse localizations

(Figure 4).

TPS Intervention dose

In this proposed study, we will deliver 800 pulses to the subject’s

left DLPFC in each session (total: 4,800 pulses). All participants

(in both active and sham TPS groups) will receive six 30-min TPS

sessions over 2 weeks (i.e., 3 sessions/week, on alternate days, total

treatment time: 3 h) using energy levels of 0.25 mJ/mm2 and a

frequency of 4Hz. We believe that a 2-week TPS intervention will

be sufficient enough to test the efficacy of TPS on ADHD (29, 39).

Participants will be followed up immediately after stimulation at 2

weeks, 1 month, and 12 weeks (Figure 1). We believe that a post-

treatment follow-up of up to 3 months is sufficient to evaluate the

sustainability of TPS on ADHD (29, 39).

Sham TPS

Participants will be given an identical TPS intervention dose,

but the silicone oil used in the verum TPS group will be replaced

by an air-filled cushion in the handpiece. Participants will also hear

sounds and stimuli similar to the verum TPS group.

Fidelity

To ensure the fidelity of the intervention, the project team

will ascertain whether the interventions will be delivered as

intended. The interventionist (PI) obtained a Ph.D. in social

sciences (HKU) and is a UK- and HK-licensed mental health

professional with more than 10 years of clinical experience in
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mental health and neuroscience. The research associate will issue

WhatsApp message reminders (e.g., TPS intervention schedule,

fMRI scan appointments, and f/u appointment slips) to parents

and will report subjects’ progress, and indicate adverse effects and

adherence throughout the trial period.

Safety, adverse effects, and risk indicators
of TPS

TPS uses very low energy for brain stimulation, thus TPS

intervention should not cause any serious adverse effects such

as intracranial bleeding, edema, or other intracranial pathology,

as confirmed in previous studies (29, 39). Although this TPS

system has obtained clinical certification (CE) indicating that it

is a safe intervention, we will prepare a checklist stating all the

potential adverse effects associated with TPS administration (29)

and monitor the subject’s tolerability and adverse events in each

session throughout the trial period. In the pilot RCT onMDD (39),

a few subjects reported transient headaches (<2 h) (4%) but none

required pain analgesics. Nonetheless, all subjects will be covered

by master trial insurance in this study.

Ethical and data security considerations

Participants’ data in both groups will be stored in two separate

datasets with an identifier linking these data. Both sets of data

will be encrypted using TrueCrypt (http://www.truecrypt.org). The

data from the baseline and 12-week follow-up will be linked

according to personal data. All precautions in data protection will

be taken, as suggested by TrueCrypt. To prevent leakage of personal

data, only the PI will have access to the personal dataset. Written

consent will be obtained from all participants and both parents.

An information sheet containing the purpose of this trial and the

potential risks and benefits of its procedures for undertaking MRI

scans in UBSN/PolyU and TPS will be provided to all parents.

Participants’ parents will be informed of their children’s anonymity;

withdrawal or non-compliance will not result in any consequences.

Outcome evaluation (primary and
secondary outcomes)

Baseline assessment

Demographic data
The subjects’ basic demographic data, including age, gender,

body mass index, years of education, birth history, number

of siblings, monthly household income, and first-degree family

members’ history of ADHD (yes/no), will be collected upon study

entry. Details of the subjects’ psychiatric history, including the age

of diagnosis and any developmental delays or serious injury on any

bodily parts, or serious physical illness(es), will also be recorded at

the baseline assessment.

Primary outcome

Attention deficit, hyperactivity impulse, and
oppositional defiance

The Swanson, Nolan, and Pelham Rating Scale (SNAP IV) will

be used to measure participants’ attention deficit, hyperactivity

impulse, and oppositional defiance. SNAP IV consists of 26 items

summarized into three factors: attention deficit, hyperactivity

impulse, and oppositional defiance. Parents, based on their general

impressions of their children, rate the severity of symptoms on

a Likert scale (0–3). A mean score of <1 indicates “normal” or

“remission”; a mean score of 1 is defined as the demarcation

between attention deficit and hyperactivity-impulsivity; a mean

score of >2 indicates “abnormal.” SNAP-IV is a reliable and valid

scale used in RCTs (45) and has good psychometric properties that

can be used for the Chinese population (46).

Secondary outcomes

Clinical Global Impression
The Clinical Global Impression (CGI)—severity and

improvement scale (CGI-S and CGI-I) is generally used to

assess illness severity and global improvement. CGI-S is a 7-point

clinician rating scale based on observed and reported symptoms,

behavior, and function in the past 7 days. CGI-I is a 7-point scale

to assess whether the patient’s ADHD condition has improved or

worsened compared to the baseline. CGI-S and CGI-I will be used

to supplement each other (47). These scales had been used in a

double-blinded placebo-controlled RCT (48).

Executive function
The Stroop test is a neuropsychological test commonly used to

assess the inhibition control component of executive function and

test the subject’s ability to inhibit cognitive interference that occurs

when the processing of the target stimulus feature is impeded by

the simultaneous processing of a second stimulus attribute (49).

ADHD symptoms and behavior
The ADHDRating Scale–IV (ADHDRS-IV) (50, 51) is a widely

used ADHD scale comprising 18 items. The participant’s parent

rates the frequency of each symptom on the scale. Each item is

scored on a 4-point Likert scale of 0–3 (0: never or rarely; 1:

sometimes; 2: often; and 3: very often). The nine odd items evaluate

attention deficits, composing the inattention subscale (or IA); the

nine even items evaluate hyperactivity-impulsivity, composing the

hyperactivity-impulsivity (or HI) subscale; the total score is the sum

of all the scores on the 18 items. The ADHD RS-IV is a reliable and

valid scale that can be used for the Chinese population (52).

Neuroimaging

Participants will receive pre- and post-treatment MRI scans

(total: two MRI scans) to measure any changes in structural and

functional connectivity changes in the brain. Structural MRI, DTI,
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and rs-fMRI will be performed using a 3T scanner at the UBSN

(ZB216), The Hong Kong Polytechnic University. The subjects will

be closely monitored by the research assistant and the radiographer

during scanning. The whole scan will last around 30min including

preparation. Structural MRI scans including T1 sequences will be

used for assessing regional volume differences across the whole

brain. High-resolution sagittal 3D T1-weighted (SPGR/MPRAGE)

images of 1 × 1 × 1mm will be acquired with a repetition time

(TR) = 1,820ms, echo time (TE) = 3.75ms, inversion time (TI)

= 1,100ms, and flip angle = 70◦. DTI sequence will be conducted

using single-shot spin-echo echo-planar imaging, with diffusion-

sensitizing gradients applied along 16 non-collinear directions with

diffusion weighting factor b= 1,000 s/mm2, plus two b= 0 images.

The imaging parameters will be TR/TE = 1,200/82ms, matrix size

= 128 × 128, the field of view (FOV) = 240mm, slice thickness

= 3mm with no intersection gap, number of excitations = 2,

and number of slices = 67. Finally, resting-state fMRI of 150 T2-

weighted gradient echo planar imaging (EPI) will be acquired with

TR = 2 s and TE = 32ms; 32 slices, with a resolution of 3 × 3

× 4mm, during which subjects will view a fixation cross (“+”)

passively at the center of the screen. Images processing and analysis

will be performed using software packages including FSL (http://

fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Total brain and total gray and white

matter volumes will be extracted from the T1 structural scan.

Gray matter and white matter tissue maps will be segmented and

compared for regional tissue density differences using voxel-based

morphometry (VBM) (53). Structural connectivity will be assessed

by fractional anisotropy (FA) maps extracted from DTI imaging.

For functional connectivity, all resting state-fMRI (rs-fMRI)

volumes will be pre-processed, with motion correction and

slice timing correction, then linearly registered to the Montreal

Neurological Institute (MNI) standard space. A data-driven

approach will be used for the analysis of rs-fMRI data. Independent

component analysis will be done with Multivariate Exploratory

Linear Decomposition in FSL. A set of independent components

will be identified as the common resting-state functional networks.

The global and local efficiency, modularity, and hubs will be

computed using the Brain Connectivity Toolbox (https://sites.

google.com/site/bctnet/). A dual regression approach will be

used to investigate between-group differences in the individual

functional networks. The significance threshold of the voxel-wise

differences will be set at p < 0.05 (family-wise error corrected).

Statistical analyses

All statistical analyses will be performed using the statistical

software R for Windows (R version 4.1.0). Means and standard

deviations (SD) for the continuous variables will be presented,

while numbers and percentages for the categorical variables will

be shown. A p-value of <0.05 is considered statistically significant.

Sociodemographic differences between the TPS group and the

sham TPS group will be analyzed using the Chi-square test and t-

test. If there are significant differences between sociodemographic

factors, covariates will be considered confounding variables in the

analyses. The normality of the primary outcome (SNAP-IV) scores

will be tested by the Shapiro–Wilk test for each combination of

factor levels (group and time). T-test will be used to test the

baseline difference. A linear mixed model will be used to test the

group (between-subject factor), time (within-subject factor), and

group × time interaction effects of the SNAP-IV score between

the TPS group and the sham TPS group. Post-hoc comparisons

between groups and time points will be conducted using a t-

test with Bonferroni correction. The normality of the secondary

outcome scores will be tested by the Shapiro–Wilk test for each

time point. For normally distributed outcomes, a linear mixed

model will be used to determine whether the outcome scores are

significantly different between the pre- and post-tests. For outcome

scores that deviate grossly from normality, a non-parametric

Friedman test will be used to test the mean difference. A Cohen’s

d effect size for each outcome will be calculated, where d =

0.2, 0.5, and 0.8 correspond to small, medium, and large effect

sizes (54). Missing data will be managed by multiple imputations

(55). For the neurological rs-fMRI data, a longitudinal voxel-

based morphometry (VBM) will be used to examine whether TPS

produces local changes in gray matter. Specifically, relative local

increases and decreases between pre- and post-intervention scans

will be compared within and between study groups. The diffusion

MR data will be analyzed using the diffusion tensor model (56).

Two standard diffusion indices will then be obtained: the apparent

diffusion coefficient and the fractional anisotropy. Pre- and post-

treatment DTI scans will permit the assessment of changes in axial

diffusivity, with lower values being interpreted as the structural

enhancement of white matter.

Discussion

This study is the first RCT to evaluate the efficacy and

safety of TPS in patients with ADHD nationwide. Findings

that emerge from this project will have a significant impact on

patients/caregivers and the community at large. Findings will

inform health policymakers on whether TPS could be used as an

adjunct treatment in the clinical setting in psychiatry—given the

fact that both medications and psychotherapy require long-term

input to sustain the therapeutic effects of ADHD. As such, this

inevitably increases health costs, the caregiving burden, and the

global disease burden. If this project can prove that TPS is effective

in the treatment of patients with ADHD, it could instill hope in the

patients’ families and reduce their psychological burden to a large

extent that ADHD is curable and treatable by TPS. This would be a

breakthrough in neuroscience research specific for adolescents with

special education needs (SEN) in Hong Kong.

Trial status

This trial was registered with clinicaltrails.gov on 10 August

2022 (protocol version). Recruitment commenced from 1 June 2022

to 30 Sept 2022.
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Hong Kong Polytechnic University. Written informed consent to
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